82 research outputs found

    Extended Cold Molecular Gas Reservoirs in z~3.4 Submillimeter Galaxies

    Get PDF
    We report the detection of spatially resolved CO(1-0) emission in the z~3.4 submillimeter galaxies (SMGs) SMM J09431+4700 and SMM J13120+4242, using the Expanded Very Large Array (EVLA). SMM J09431+4700 is resolved into the two previously reported millimeter sources H6 and H7, separated by ~30kpc in projection. We derive CO(1-0) line luminosities of L'(CO 1-0) = (2.49+/-0.86) and (5.82+/-1.22) x 10^10 K km/s pc^2 for H6 and H7, and L'(CO 1-0) = (23.4+/-4.1) x 10^10 K km/s pc^2 for SMM J13120+4242. These are ~1.5-4.5x higher than what is expected from simple excitation modeling of higher-J CO lines, suggesting the presence of copious amounts of low-excitation gas. This is supported by the finding that the CO(1-0) line in SMM J13120+4242, the system with lowest CO excitation, appears to have a broader profile and more extended spatial structure than seen in higher-J CO lines (which is less prominently seen in SMM J09431+4700). Based on L'(CO 1-0) and excitation modeling, we find M_gas = 2.0-4.3 and 4.7-12.7 x 10^10 Msun for H6 and H7, and M_gas = 18.7-69.4 x 10^10 Msun for SMM J13120+4242. The observed CO(1-0) properties are consistent with the picture that SMM J09431+4700 represents an early-stage, gas-rich major merger, and that SMM J13120+4242 represents such a system in an advanced stage. This study thus highlights the importance of spatially and dynamically resolved CO(1-0) observations of SMGs to further understand the gas physics that drive star formation in these distant galaxies, which becomes possible only now that the EVLA rises to its full capabilities.Comment: 6 pages, 4 figures, to appear in ApJL (EVLA Special Issue; accepted May 19, 2011

    Evidence for a clumpy, rotating gas disk in a submillimeter galaxy at z=4

    Get PDF
    We present Karl G. Jansky Very Large Array (VLA) observations of the CO(2-1) emission in the z=4.05 submillimeter galaxy (SMG) GN20. These high-resolution data allow us to image the molecular gas at 1.3 kpc resolution just 1.6 Gyr after the Big Bang. The data reveal a clumpy, extended gas reservoir, 14 +/- 4 kpc in diameter, in unprecedented detail. A dynamical analysis shows that the data are consistent with a rotating disk of total dynamical mass 5.4 +/- 2.4 X 10^11 M_sun. We use this dynamical mass estimate to constrain the CO-to-H_2 mass conversion factor (alpha_CO), finding alpha_CO=1.1 +/- 0.6 M_sun (K km s^-1 pc^2)^-1. We identify five distinct molecular gas clumps in the disk of GN20 with masses a few percent of the total gas mass, brightness temperatures of 16-31K, and surface densities of >3,200-4,500 X (alpha_CO/0.8) M_sun pc^-2. Virial mass estimates indicate they could be self-gravitating, and we constrain their CO-to-H_2 mass conversion factor to be <0.2-0.7 M_sun (K km s^-1 pc^2)^-1. A multiwavelength comparison demonstrates that the molecular gas is concentrated in a region of the galaxy that is heavily obscured in the rest-frame UV/optical. We investigate the spatially-resolved gas excitation and find that the CO(6-5)/CO(2-1) ratio is constant with radius, consistent with star formation occuring over a large portion of the disk. We discuss the implications of our results in the context of different fueling scenarios for SMGs.Comment: 15 pages, 9 figures, accepted for publication in Ap

    HI Density Distribution Driven by Supernovae: A Simulation Study

    Full text link
    We model the complex distribution of atomic hydrogen (HI) in the interstellar medium (ISM) assuming that it is driven entirely by supernovae (SN). We develop and assess two different models. In the first approach, the simulated volume is randomly populated with non-overlapping voids of a range of sizes. This may relate to a snapshot distribution of supernova-remnant voids, although somewhat artificially constrained by the non-overlap criterion. In the second approach, a simplified time evolution (considering momentum conservation as the only governing constraint during interactions) is followed as SN populate the space with the associated input mass and energy. We describe these simulations and present our results in the form of images of the mass and velocity distributions and the associated power spectra. The latter are compared with trends indicated by available observations. In both approaches, we find remarkable correspondence with the observed statistical description of well-studied components of the ISM, wherein the spatial spectra have been found to show significant deviations from the Kolmogorov spectrum. One of the key indications from this study, regardless of whether or not the SN-induced turbulence is the dominant process in the ISM, is that the apparent non-Kolmogorov spectral characteristics (of HI and/or electron column density across thick or thin screens) needed to explain related observations may not at all be in conflict with the underlying turbulence (i.e. the velocity structure) being of Kolmogorov nature. We briefly discuss the limitations of our simulations and the various implications of our results.Comment: To appear in Astrophysical Journal. 21 pages, 6 figure

    An Analysis of ALMA Deep Fields and the Perceived Dearth of High-z Galaxies

    Get PDF
    Deep, pencil-beam surveys from ALMA at 1.1-1.3mm have uncovered an apparent absence of high-redshift dusty galaxies, with existing redshift distributions peaking around z1.52.5z\sim1.5-2.5. This has led to a perceived dearth of dusty systems at z>4z>4, and the conclusion, according to some models, that the early Universe was relatively dust-poor. In this paper, we extend the backward evolution galaxy model described by Casey et al. (2018) to the ALMA regime (in depth and area) and determine that the measured number counts and redshift distributions from ALMA deep field surveys are fully consistent with constraints of the infrared luminosity function (IRLF) at z<2.5z<2.5 determined by single-dish submillimeter and millimeter surveys conducted on much larger angular scales (110\sim1-10deg2^{2}). We find that measured 1.1-1.3mm number counts are most constraining for the measurement of the faint-end slope of the IRLF at z4z4. Recent studies have suggested that UV-selected galaxies at z>4z>4 may be particularly dust-poor, but we find their millimeter-wave emission cannot rule out consistency with the Calzetti dust attenuation law even by assuming relatively typical, cold-dust (Tdust30T_{\rm dust}\approx30\,K) SEDs. Our models suggest that the design of ALMA deep fields requires substantial revision to constrain the prevalence of z>4z>4 early Universe obscured starbursts. The most promising avenue for detection and characterization of such early dusty galaxies will come from future ALMA 2mm blank field surveys covering a few hundred arcmin2^{2} and the combination of existing and future dual-purpose 3mm datasets.Comment: 21 pages, 12 figures, accepted for publication in Ap

    The Sloan Digital Sky Survey Stripe 82 Imaging Data: Depth-Optimized Co-adds Over 300 Deg^2 in Five Filters

    Get PDF
    We present and release co-added images of the Sloan Digital Sky Survey (SDSS) Stripe 82. Stripe 82 covers an area of 300 deg^2 on the Celestial Equator, and has been repeatedly scanned 70-90 times in the ugriz bands by the SDSS imaging survey. By making use of all available data in the SDSS archive, our co-added images are optimized for depth. Input single-epoch frames were properly processed and weighted based on seeing, sky transparency, and background noise before co-addition. The resultant products are co-added science images and their associated weight images that record relative weights at individual pixels. The depths of the co-adds, measured as the 5 sigma detection limits of the aperture (3.2 arcsec diameter) magnitudes for point sources, are roughly 23.9, 25.1, 24.6, 24.1, and 22.8 AB magnitudes in the five bands, respectively. They are 1.9-2.2 mag deeper than the best SDSS single-epoch data. The co-added images have good image quality, with an average point-spread function FWHM of ~1 arcsec in the r, i, and z bands. We also release object catalogs that were made with SExtractor. These co-added products have many potential uses for studies of galaxies, quasars, and Galactic structure. We further present and release near-IR J-band images that cover ~90 deg^2 of Stripe 82. These images were obtained using the NEWFIRM camera on the NOAO 4-m Mayall telescope, and have a depth of about 20.0--20.5 Vega magnitudes (also 5 sigma detection limits for point sources).Comment: 19 pages, 17 figures, accepted for publication in ApJ

    Discovery of a Radio-Selected z ~ 6 Quasar

    Full text link
    We present the discovery of only the second radio-selected, z ~ 6 quasar. We identified SDSS J222843.54+011032.2 (z=5.95) by matching the optical detections of the deep Sloan Digital Sky Survey (SDSS) Stripe 82 with their radio counterparts in the Stripe82 VLA Survey. We also matched the Canadian-France-Hawaiian Telescope Legacy Survey Wide (CFHTLS Wide) with the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey but have yet to find any z ~ 6 quasars in this survey area. The discovered quasar is optically-faint, z = 22.3 and M_{1450} ~ -24.5, but radio-bright, with a flux density of f1.4GHz,peak_{1.4GHz, peak} = 0.31mJy and a radio-loudness of R ~ 1100 (where R = f_{5GHz}/f_{2500}). The i-z color of the discovered quasar places it outside the color selection criteria for existing optical surveys. We conclude by discussing the need for deeper wide-area radio surveys in the context of high-redshift quasars.Comment: 20 pages, 6 figures, and ApJ accepte

    Abdominal obesity and other risk factors largely explain the high CRP in Indigenous Australians relative to the general population, but not gender differences: a cross-sectional study

    Get PDF
    Background: Previous studies reported high C-reactive protein (CRP) levels in Indigenous Australians, which may contribute to their high risk of cardiovascular disease. We compared CRP levels in Indigenous Australians and the general population, accounting for obesity and other risk factors.Methods: Cross-sectional study of CRP and risk factors (weight, height, waist and hip circumferences, blood pressure, lipids, blood glucose, and smoking status) in population-based samples from the Diabetes and Related conditions in Urban Indigenous people in the Darwin region (DRUID) study, and the Australian Diabetes, Obesity and Lifestyle study (AusDiab) follow-up.Results: CRP concentrations were higher in women than men and in DRUID than AusDiab. After multivariate adjustment, including waist circumference, the odds of high CRP (&gt;3.0 mg/L) in DRUID relative to AusDiab were no longer statistically significant, but elevated CRP was still more likely in women than men. After adjusting for BMI (instead of waist circumference) the odds for elevated CRP in DRUID participants were still higher relative to AusDiab participants among women, but not men. Lower HDL cholesterol, impaired glucose tolerance (IGT), and higher diastolic blood pressure were associated with having a high CRP in both men and women, while current smoking was associated with high CRP in men but not women.Conclusions: High concentrations of CRP in Indigenous participants were largely explained by other risk factors, in particular abdominal obesity. Irrespective of its independence as a risk factor, or its aetiological association with coronary heart disease (CHD), the high CRP levels in urban Indigenous women are likely to reflect increased vascular and metabolic risk. The significance of elevated CRP in Indigenous Australians should be investigated in future longitudinal studies
    corecore